Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccines (Basel) ; 10(9)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2044017

ABSTRACT

The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.

3.
Vaccines (Basel) ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1939063

ABSTRACT

The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.

4.
Viruses ; 14(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1674820

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to have a significant impact on global public health. Multiple mechanisms for SARS-CoV-2 cell entry have been described; however, the role of transferrin receptor 1 (TfR1) in SARS-CoV-2 infection has received little attention. We used ferristatin II to induce the degradation of TfR1 on the surface of Vero cells and to study the consequences of such treatment on the viability of the cells and the replication of SARS-CoV-2. We demonstrated that ferristatin II is non-toxic for Vero cells in concentrations up to 400 µM. According to confocal microscopy data, the distribution of the labeled transferrin and receptor-binding domain (RBD) of Spike protein is significantly affected by the 18h pretreatment with 100 µM ferristatin II in culture medium. The uptake of RBD protein is nearly fully inhibited by ferristatin II treatment, although this protein remains bound on the cell surface. The findings were well confirmed by the significant inhibition of the SARS-CoV-2 infection of Vero cells by ferristatin II with IC50 values of 27 µM (for Wuhan D614G virus) and 40 µM (for Delta virus). A significant reduction in the infectious titer of the Omicron SARS-CoV-2 variant was noted at a ferristatin II concentration as low as 6.25 µM. We hypothesize that ferristatin II blocks the TfR1-mediated SARS-CoV-2 host cell entry; however, further studies are needed to elucidate the full mechanisms of this virus inhibition, including the effect of ferristatin II on other SARS-CoV-2 receptors, such as ACE2, Neuropilin-1 and CD147. The inhibition of viral entry by targeting the receptor on the host cells, rather than the viral mutation-prone protein, is a promising COVID-19 therapeutic strategy.


Subject(s)
Biphenyl Compounds/pharmacology , SARS-CoV-2/drug effects , Sulfones/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Inhibitory Concentration 50 , Protein Binding , Protein Domains , Receptors, Transferrin/antagonists & inhibitors , Vero Cells
5.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-1453292

ABSTRACT

This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.

6.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1390778

ABSTRACT

BACKGROUND: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. METHODS: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. RESULTS: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA-CCR7- phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. CONCLUSION: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , Interferon-gamma/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/immunology , Humans , Leukocytes, Mononuclear/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL